Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.05.23285483

ABSTRACT

Early case detection is critical to preventing onward transmission of COVID-19 by enabling prompt isolation of index infections, and identification and quarantining of contacts. Timeliness and completeness of ascertainment depend on the surveillance strategy employed. We use rapid prototype modelling to quickly investigate the effectiveness of testing strategies, to aid decision making. Models are developed with a focus on providing relevant results to policy makers, and these models are continually updated and improved as new questions are posed. The implementation of testing strategies in high risk settings in Australia was supported using models to explore the effects of test frequency and sensitivity on outbreak detection. An exponential growth model is firstly used to demonstrate how outbreak detection changes with varying growth rate, test frequency and sensitivity. From this model we see that low sensitivity tests can be compensated for by high frequency testing. This model is then updated to an Agent Based Model, which was used to test the robustness of the results from the exponential model, and to extend it to include intermittent workplace scheduling. These models help our fundamental understanding of disease detectability through routine surveillance in workplaces and evaluate the impact of testing strategies and workplace characteristics on the effectiveness of surveillance. This analysis highlights the risks of particular work patterns while also identifying key testing strategies to best improve outbreak detection in high risk workplaces.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.23.21254148

ABSTRACT

PCR testing is a crucial capability for managing disease outbreaks, but it is also a limited resource and must be used carefully to ensure the information gain from testing is valuable. Testing has two broad uses, namely to track epidemic dynamics and to reduce transmission by identifying and managing cases. In this work we develop a modelling framework to examine the effects of test allocation in an epidemic, with a focus on using testing to minimise transmission. Using the COVID-19 pandemic as an example, we examine how the number of tests conducted per day relates to reduction in disease transmission, in the context of logistical constraints on the testing system. We show that if daily testing is above the routine capacity of a testing system, which can cause delays, then those delays can undermine efforts to reduce transmission through contact tracing and quarantine. This work highlights that the two goals of aiming to reduce transmission and aiming to identify all cases are different, and it is possible that focusing on one may undermine achieving the other. To develop an effective strategy, the goals must be clear and performance metrics must match the goals of the testing strategy. If metrics do not match the objectives of the strategy, then those metrics may incentivise actions that undermine achieving the objectives.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL